-----0-----

MINISTERE DU PLAN, DE L'ECONOMIE ET DE LA COOPERATION INTERNATIONALE

-----0-----

SECRTARIAT GENERAL

-----0----

INSTITUT NATIONAL DE LA STATISTIQUE, DES ETUDES ECONOMIQUES ET DEMOGRAPHIQUES

-----0-----

DEPARTEMENT DES AFFAIRES ADMINISTRATIVES, FINANCIERES, DES RESSOURCES HUMAINES ET DE LA FORMATION

N'Djaména, le 05 février 2012

TEST DE PRESELECTION

ITS VOIE A

EXERCICE 1:

On considère la suite de fonctions numériques (f_n) définies sur l'ensemble des nombres réels par $f_n(x) = x^n sinx$; ou n est entier réel.

- 1. Etudier les variations de f_n sur $[0, \frac{\pi}{2}]$.
- 2. On pose $I_n = \int_0^{\frac{\pi}{2}} f_n(x)$, trouver une relation de récurrence entre I_n et I_{n-2} pour tout n.

EXERCICE 2:

Calculer l'intégrale suivante : $\int_{1}^{3} \ln(x) dx$

EXERCICE 3:

- 1. Démontrer par récurrence que : $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$
- 2. Etablir une relation liant C_{n+1}^{p+1} à C_n^p et C_n^{p+1} .

Rappel:
$$C_n^p = \frac{n!}{p!(n-p)!}$$
 pour $0 \le p \le n$

EXERCICE 4:

Soit l'équation : $a^3 - 3a - 1 = 0$; Montrer qu'elle admet trois solutions réelles $a_{1,}$ a_2 et a_3 .

EXERCICE 5 : (2000)

Soit f la fonction numérique définie sur l'ensemble des nombres réels non nuls(R*) par :

$$f(x) = \frac{e^{x} - 1}{x}$$

- 1. Montrer qu'il existe une fonction numérique continue $\varphi(x)$ définie sur R et telle que : $\forall x \in R^*$, $\varphi(x) = f(x)$.
- 2. Etudier le sens des variations de φ ;
- 3. Soit g la fonction définie sur R par : $g(x) = \frac{1}{x} \ln(\frac{e^{x}-1}{x})$; ln désigne le logarithme népérien.
- 4. Déterminer l'ensemble de définition de g.
- 5. Déterminer $\lim_{x\to 0} \frac{xg(x)}{\varphi(x)-1}$