REPUBLIQUE DU TCHAD

Unité - Travail - Progrès

MINISTÈRE DE L'ÉCONOMIE ET DU PLAN

SECRETARIAT GENERAL

Institut National de la Statistique, des Études Économiques et Démographiques

Département des Affaires Administratives,

Financières, des Ressources Humaines et de la Formation

N'Djaména, le 6 février 2011

TEST DE PRESELECTION AU CONCOURS D'ENTREE DANS LES ECOLES DE STATISTIQUE

OPTION: ISE/ITS (ECONOMIE)

Durée: 2 heures

Exercice n°1:

Soient $u: \square^2 \to \square^3$ et $v: \square^3 \to \square^2$ définies par u(x,y) = (x+2y,2x-y,2x+3y) et v(x,y,z) = (x-2y+z,2x+y-3z).

- 1. Montrer que u et v sont linéaires et donner les matrices de $u, v, u \circ v$ et $v \circ u$ dans les bases canoniques de leurs espaces de définition respectifs. En déduire les expressions de $u \circ v(x, y, z)$ et $v \circ u(x, y)$.
- 2. Soit $B_2 = \{E_1, E_2\}$ et $B_3 = \{F_1, F_2, F_3\}$ les bases canoniques de \Box 2 et \Box 3 . Montrer que $B'_2 = \{E'_1, E'_2\}$ et $B'_3 = \{F'_1, F'_2, F'_3\}$ sont des bases de \Box 2 et \Box 3 respectivement, où $E'_1 = E_1$, $E'_2 = E_1 E_2$, $F'_1 = F_1$, $F'_2 = F_1 + F_2$ et $F'_3 = F_1 + F_2 + F_3$.
- 3. Donner la matrice P de passage de la base B_2 à la base B'_2 puis la matrice Q de passage de la base B_3 à la base B'_3 .
- 4. Ecrire la matrice de u dans les bases B'_2 et B_3 puis dans les bases B'_2 et B'_3 et enfin celle de v dans les bases B'_3 et B'_2 .

Exercice n°2:

Soit f et g deux applications de $\hfill \square$ dans $\hfill \square$ définies par :

$$f(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt \text{ et } g(x) = \int_0^1 e^{-t^2} dt$$

- 1. Calculer f'(x) en fonction de g(x) et g'(x).
- 2. En déduire que $f + g^2$ est une constante et calculer cette constante.
- 3. Justifier que $\lim_{x \to +\infty} g(x) = \int_{0}^{+\infty} e^{-t^2} dt$.
- 4. Démontrer que $\lim_{x\to +\infty} f(x) = 0$.
- 5. En déduire $\int_{0}^{+\infty} e^{-t^2} dt$.